3.1096 \(\int \frac{(d+e x)^m}{\sqrt{c d^2+2 c d e x+c e^2 x^2}} \, dx\)

Optimal. Leaf size=40 \[ \frac{(d+e x)^{m+1}}{e m \sqrt{c d^2+2 c d e x+c e^2 x^2}} \]

[Out]

(d + e*x)^(1 + m)/(e*m*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.018051, antiderivative size = 40, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {644, 32} \[ \frac{(d+e x)^{m+1}}{e m \sqrt{c d^2+2 c d e x+c e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2],x]

[Out]

(d + e*x)^(1 + m)/(e*m*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])

Rule 644

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^p/(d
 + e*x)^(2*p), Int[(d + e*x)^(m + 2*p), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !
IntegerQ[p] && EqQ[2*c*d - b*e, 0] &&  !IntegerQ[m]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{(d+e x)^m}{\sqrt{c d^2+2 c d e x+c e^2 x^2}} \, dx &=\frac{(d+e x) \int (d+e x)^{-1+m} \, dx}{\sqrt{c d^2+2 c d e x+c e^2 x^2}}\\ &=\frac{(d+e x)^{1+m}}{e m \sqrt{c d^2+2 c d e x+c e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0121871, size = 29, normalized size = 0.72 \[ \frac{(d+e x)^{m+1}}{e m \sqrt{c (d+e x)^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2],x]

[Out]

(d + e*x)^(1 + m)/(e*m*Sqrt[c*(d + e*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 39, normalized size = 1. \begin{align*}{\frac{ \left ( ex+d \right ) ^{1+m}}{em}{\frac{1}{\sqrt{c{e}^{2}{x}^{2}+2\,cdex+c{d}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x)

[Out]

(e*x+d)^(1+m)/e/m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.22615, size = 23, normalized size = 0.57 \begin{align*} \frac{{\left (e x + d\right )}^{m}}{\sqrt{c} e m} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="maxima")

[Out]

(e*x + d)^m/(sqrt(c)*e*m)

________________________________________________________________________________________

Fricas [A]  time = 2.36558, size = 96, normalized size = 2.4 \begin{align*} \frac{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}}{\left (e x + d\right )}^{m}}{c e^{2} m x + c d e m} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="fricas")

[Out]

sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*(e*x + d)^m/(c*e^2*m*x + c*d*e*m)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{m}}{\sqrt{c \left (d + e x\right )^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2),x)

[Out]

Integral((d + e*x)**m/sqrt(c*(d + e*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{m}}{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^m/sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2), x)